Abstract

In a previous article we proved a result of the type “invariance under twisting” for Brzeziński's crossed products. In this article we prove a converse of this result, obtaining thus a characterization of what we call equivalent crossed products. As an application, we characterize cross product bialgebras (in the sense of Bespalov and Drabant) that are equivalent (in a certain sense) to a given cross product bialgebra in which one of the factors is a bialgebra and whose coalgebra structure is a tensor product coalgebra.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.