Abstract
This paper presents an equivalent continuum method for simulating the behaviour of geocell reinforced sand foundation beds, using finite element technique. An equivalent composite model is used for numerically simulating the improvement in the strength and stiffness of sand confined with geocells. Shear strength of geocell encased sand is derived from the additional confining pressure due to geocell using hoop tension theory. The stiffness of geocell encased sand is represented by an empirical equation in terms of the stiffness of the unreinforced sand and the tensile modulus of the geocell material. Numerical simulations of strip footings resting on sand bed are carried out with and without geocell layer, varying parameters like, the dimensions of geocell layer, pocket size, depth of placement of geocell layer and the tensile modulus of the geocell material. The results of numerical analyses are validated with the corresponding experimental results. The comparison between the numerical results and the experimental results is found to be reasonably good. Some significant observations on the mechanism of geocell reinforcement have been presented in this paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.