Abstract

Carbon nanotubes have drawn tremendous interest due to their excellent mechanical and electronic properties. Carbon nanotubes have a similar molecular structure as that of graphene sheets. Hence, characterization of mechanical properties of graphene sheet based on equivalent continuum modelling is of considerable importance. Our initial studies are carried out on a single carbon ring/cell. The ring is then modelled as a truss (finite) element assemblage and equivalent Young's modulus is computed for a few fundamental modes. Next, these studies have been extended to model graphene sheet as a planar continuum to determine the mechanical properties (Young's modulus, shear modulus and Poisson's ratio) for typical modes of deformation. Further research is in progress to investigate how this set of different values can be integrated together towards a meaningful continuum characterization of the inherent discrete structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.