Abstract
This study proposes a low-frequency metamaterial(MM) coupled with an equivalent circuit model to emulate the behavior of an MM-based Wireless Power Transfer (WPT) system. For this purpose, the electromagnetic simulation and Finite Element Analysis (FEA) of the proposed MM-based WPT system are performed in ANSYS three-dimensional (3D) High-Frequency Structured Simulator (HFSS). In addition, numerical analysis of the circuit design of the proposed structure is performed in a MATLAB simulation environment to evaluate its transfer characteristics. While some methods, including effective medium theory and transmission line circuit model, have been exploited to explain the physical mechanism of MM-based WPT systems, some of the reactive parameters and the fundamental physical interpretation have not been clearly expounded. In contrast to existing theoretical models, the proposed approach focuses on the effect of system parameters of the MM and transfer coils on transfer characteristics, coupled with its effectiveness in analyzing complex circuits. A design prototype is fabricated for experimental measurement of power transfer efficiency and medium parameters using the KeySight ENA 5061 vector network analyzer (VNA), confirming the validity of the proposed design. The excellent efficiency enhancement and mutual coupling make the design an attractive solution for WPT applications. A close agreement of the experimental results and numerical simulation validates the accuracy of the analytical model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.