Abstract

SummaryIn this paper, an equivalent circuit model‐based electrically small patch antenna is designed for sub‐6 GHz 5G application (3.5 GHz) using 50‐Ω microstrip line feed. The overall size of the proposed antenna is 0.33λ0 × 0.4λ0 × 0.019λ0 (28 × 34 × 1.6 mm3) at 3.50 GHz frequency. The proposed antenna has a tilted Y‐shape slot, two rectangular shape slots, and two rectangular shape notches in the radiating patch. The proposed antenna is resonating from 3.21 to 3.74 GHz covering the entire sub‐6 GHz 5G band (3.3–3.8 GHz). The impedance bandwidth (simulated) of the proposed antenna has been obtained 530 MHz resonating at 3.50 GHz frequency. The good return loss of −23.62 dB is also obtained at 3.50 GHz resonant frequency. The simulation results and geometry of the proposed antenna are validated with equivalent circuit model and experimental measurement of prototype antenna using vector network analyzer (VNA) and anechoic chamber. In the whole operating frequency range, the measured findings show reasonable agreement with the simulated ones. The measured impedance bandwidth of the proposed antenna has been obtained 480 MHz (3.21–3.69 GHz) resonating at 3.48 GHz frequency with a return loss of −21.61 dB, while the theoretical impedance bandwidth of the proposed antenna has been obtained 720 MHz (3.18–3.90 GHz) resonating at 3.58 GHz frequency with a return loss of −21.5 dB. The peak gain of 3.39 (simulated) and 3.2 dB (measured) is obtained at 3.50 GHz frequency. Moreover, the antenna shows 97% (simulated) and 95% (measured) efficiency at 3.50 GHz frequency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call