Abstract
We present equivalent boundary conditions and asymptotic models for the solution of a transmission problem set in a domain which represents the sun and its atmosphere. This problem models the propagation of an acoustic wave in time-harmonic regime. The specific non-standard feature of this problem lies in the presence of a small parameter δ which represents the inverse rate of the exponential decay of the density in the atmosphere. This problem is well suited for the notion of equivalent conditions and the effect of the atmosphere on the sun is as a first approximation local. This approach leads to solve only equations set in the sun. We derive rigorously equivalent conditions up to the fourth order of approximation with respect to δ for the exact solution u. The construction of equivalent conditions is based on a multiscale expansion in power series of δ for u. Numerical simulations illustrate the theoretical results. Finally we measure the boundary layer phenomenon by introducing a characteristic length that turns out to depend on the mean curvature of the interface between the subdomains.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.