Abstract

The context of this research is devoted to the construction of an equivalent acoustic impedance model for a soundproofing scheme consisting of a three-dimensional porous medium inserted between two thin plates. Part 1 of this paper presents the experiments performed and a probabilistic algebraic model of the wall acoustic impedance constructed using the experimental data basis for the medium- and high-frequency ranges. The probabilistic algebraic model is constructed by using the general mathematical properties of wall acoustic impedance operators (symmetry, odd and even functions with respect to the frequency, decreasing functions when frequency goes to infinity, behaviour when frequency goes to zero and so on). The parameters introduced in this probabilistic algebraic model are fitted with the experimental data basis. Finally, this probabilistic algebraic model summarizes all the experimental data bases and consequently can be reused for other researches.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.