Abstract

We investigate the complexity of equivalence problems for {∪,∩,−,+,×}-circuits computing sets of natural numbers. These problems were first introduced by Stockmeyer and Meyer (1973). We continue this line of research and give a systematic characterization of the complexity of equivalence problems over sets of natural numbers. Our work shows that equivalence problems capture a wide range of complexity classes like NL, C = L, P,Π2P, PSPACE, NEXP, and beyond. McKenzie and Wagner (2003) studied related membership problems for circuits over sets of natural numbers. Our results also have consequences for these membership problems: We provide an improved upper bound for the case of {∪,∩,−,+,×}-circuits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.