Abstract
We give an elementary proof of the fact that equivalence classes of smooth or differentiable star products on a symplectic manifold M are parametrized by sequences of elements in the second de Rham cohomology space of the manifold. The parametrization is given explicitly in terms of Fedosov's construction which yields a star product when one chooses a symplectic connection and a sequence of closed 2-forms on M. We also show how derivations of a given star product, modulo inner derivations, are parametrized by sequences of elements in the first de Rham cohomology space of M.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.