Abstract

Abstract With the aim of unifying the damping concept and evaluating the amount of damping in a structure, this paper investigates whether friction action can be equivalent to traditional viscous damping. The research focused on purely concave friction distribution cases, uniform friction distribution cases, and their combination cases in a spring-friction isolation system. The dynamic responses of a numerical method using friction action were compared with those of another numerical methods using equivalent viscous damping under sine wave ground motions. The comparison of results shows that the friction action can be converted to the equivalent viscous damping action with some errors by using an equation. The conversion accuracy of uniform friction distribution cases using the first term of the equation is much worse than that of the purely concave friction distribution cases using the second term of the equation. The reason for this being that the uniform friction distribution can prevent the structure from sliding back to its center after the ground motion; however, the viscous damping action does not have such a negative function. The comparison errors, between using the friction action and using the equivalent viscous damping, are directly proportional to the ratio of the component of uniform friction distribution to the component of purely concave friction distribution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.