Abstract

The equivalence between the two-dimensional Ising model and the one-dimensional quantum XY model is generalized to the cases with alternating/random interactions and with periodic/free boundary conditions. It is proved that the eigenstate for the maximum eigenvalue of the transfer matrix of the two-dimensional Ising model corresponds to the ground state of the Hamiltonian of the one-dimensional XY model, which certifies direct relations between the physical quantities of the two models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.