Abstract
The radial quadrature method was recently proposed for formulating the beam shape coefficients (BSCs) for shaped beams. A new deduction of BSCs using the R-quadrature method is presented in this paper, using the integral of the spherical Bessel functions in the interval ranging from zero to infinity. Based on the scalar description of the Bessel beam, the equivalence between the R-quadrature and the finite series (FS) method is confirmed. The spherical wave expansion of the scalar function allows us to simplify the formulation of the BSCs in the R-quadrature and the FS and to speed up the numerical BSC calculation. As a by-product, FS expansions of the associated Legendre functions are established, which we do not find in the literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.