Abstract

We propose the mapping of polynomial of degree 2S constructed as a linear combination of powers of spin-S (for simplicity, we called as spin-S polynomial) onto spin-crossover state. The spin-S polynomial in general can be projected onto non-symmetric degenerated spin up (high-spin) and spin down (low-spin) momenta. The total number of mapping for each general spin-S is given by 2(22S − 1). As an application of this mapping, we consider a general non-bilinear spin-S Ising model which can be transformed onto spin-crossover described by Wajnflasz model. Using a further transformation we obtain the partition function of the effective spin-1/2 Ising model, making a suitable mapping the non-symmetric contribution leads us to a spin-1/2 Ising model with a fixed external magnetic field, which in general cannot be solved exactly. However, for a particular case of non-bilinear spin-S Ising model could become equivalent to an exactly solvable Ising model. The transformed Ising model exhibits a residual entropy, then it should be understood also as a frustrated spin model, due to competing parameters coupling of the non-bilinear spin-S Ising model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call