Abstract

In the previous papers, a method is proposed to obtain microscopic definitions for internal forces of continua such as stress, higher-order stresses and heat flux. In the present paper, the relationship between higher-order stress power and heat flux is discussed, expressing the 1st law of thermodynamics with microscopic quantities in mesodomain. Then an energy equation is obtained by dividing the kinematical quantity of an atom into macroscopic and thermal motion. It is clarified that heat flux in the energy equation is equivalent to higher-order stress power since heat flux is regarded as the amount of each order power due to higher-order stresses. When higher-order stress power is separated from heat flux in the energy equation considering this equivalence, the value of heat flux decreases. These expressions of heat flux and higher-order stress are useful to obtain macroscopic quantities from numerical solutions calculated by the molecular dynamics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.