Abstract
We show experimentally and numerically that free-electron-laser (FEL) oscillators behave in a very similar way to conventional actively-mode-locked lasers. This stems from the similar structures of their underlying Haus equations. A comparative study of the temporal evolutions of the pulse train shapes and spatiotemporal regimes is performed on a Nd:YVO${}_{4}$ laser and a storage-ring free-electron laser. Furthermore, since direct observations of time-resolved pulse shapes and spectra are more accessible on free-electron lasers, the analogy also potentially enables one to investigate mode-locked laser dynamics using existing FEL facilities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.