Abstract

Different classes of multipliers have been proposed in the literature for obtaining stability criteria using passivity theory, integral quadratic constraint (IQC) theory or Lyapunov theory. Some of these classes of multipliers can be applied with slope-restricted nonlinearities. In this paper the concept of phase-containment is defined and it is shown that several classes are phase-contained within the class of Zames–Falb multipliers. There are two main consequences: firstly it follows that the class of Zames–Falb multipliers remains, to date, the widest class of available multipliers for slope-restricted nonlinearities; secondly further restrictions may be avoided when exploiting the parametrization of the other classes of multipliers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.