Abstract

In this paper we examine the connections between equistable graphs, general partition graphs and triangle graphs. While every general partition graph is equistable and every equistable graph is a triangle graph, not every triangle graph is equistable, and a conjecture due to Jim Orlin states that every equistable graph is a general partition graph. The conjecture holds within the class of chordal graphs; if true in general, it would provide a combinatorial characterization of equistable graphs. Exploiting the combinatorial features of triangle graphs and general partition graphs, we verify Orlin’s conjecture for several graph classes, including AT-free graphs and various product graphs. More specifically, we obtain a complete characterization of the equistable graphs that are non-prime with respect to the Cartesian or the tensor product, and provide some necessary and sufficient conditions for the equistability of strong, lexicographic and deleted lexicographic products. We also show that the general partition graphs are not closed under the strong product, answering a question by McAvaney et al.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.