Abstract

A graph is called equistable when there is a non-negative weight function on its vertices such that a set S of vertices has total weight 1 if and only if S is maximal stable. We show that a necessary condition for a graph to be equistable is sufficient when the graph in question is distance-hereditary. This is used to design a polynomial-time recognition algorithm for equistable distance-hereditary graphs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.