Abstract
Equipment fault prognosis is important for reliability, operational safety, and efficient performance of equipment. Temporal fault data model is built according to the principles of the Apriori traditional association rules algorithm based on the characteristics of fault data. An Improved Apriori algorithm and frequent temporal association rules algorithm are proposed in this study by converting fault data to temporal item sets matrix. Equipment fault trends are predicted by mining the frequent temporal association rules of fault data based on the algorithm, which provides good support for equipment maintenance and management. At last an example is given to prove the feasibility and practical application of proposed algorithms. DOI : http://dx.doi.org/10.11591/telkomnika.v12i3.4563 Full Text: PDF
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: TELKOMNIKA Indonesian Journal of Electrical Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.