Abstract
Energy behaviours will play a key role in decarbonising the building sector but require the provision of tailored insights to assist occupants to reduce their energy use. Energy disaggregation has been proposed to provide such information on the appliance level without needing a smart meter plugged in to each load. However, the use of public datasets with pre-collected data employed for energy disaggregation is associated with limitations regarding its compatibility with random households, while gathering data on the ground still requires extensive, and hitherto under-deployed, equipment and time commitments. Going beyond these two approaches, here, we propose a novel data acquisition protocol based on multiplexing appliances’ signals to create an artificial database for energy disaggregation implementations tailored to each household and dedicated to performing under conditions of time and equipment constraints, requiring that only one smart meter be used and for less than a day. In a case study of a Greek household, we train and compare four common algorithms based on the data gathered through this protocol and perform two tests: an out-of-sample test in the artificially multiplexed signal, and an external test to predict the household’s appliances’ operation based on the time series of a real total consumption signal. We find accurate monitoring of the operation and the power consumption level of high-power appliances, while in low-power appliances the operation is still found to be followed accurately but is also associated with some incorrect triggers. These insights attest to the efficacy of the protocol and its ability to produce meaningful tips for changing energy behaviours even under constraints, while in said conditions, we also find that long short-term memory neural networks consistently outperform all other algorithms, with decision trees closely following.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.