Abstract

A k-cycle decomposition of a complete multipartite graph is said to be gregarious if each k-cycle in the decomposition has its vertices in k different partite sets. Equipartite 3-cycle systems are 3-GDDs (and so are automatically gregarious), and necessary and sufficient conditions for their existence are known. The cases of equipartite gregarious 4-, 6- and 8-cycle systems have also been dealt with (using techniques that could be applied in the case of any even length cycle). Here we give necessary and sufficient conditions for the existence of a gregarious 5-cycle decomposition of the complete equipartite graph Km(n) (in effect the first odd length cycle case for which the gregarious constraint has real meaning). In doing so, we also define some general cyclic constructions for the decomposition of certain complete equipartite graphs into gregarious p-cycles (where p is an odd prime).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.