Abstract

Adult equine hepatocytes have proven challenging to culture long term in vitro as they rapidly lose their morphology and functionality, thus limiting studies on liver function and response to disease. In this study, we describe for the first time the differentiation of equine mesenchymal stromal cells (MSC) from a variety of sources into functional hepatocyte-like cells (HLC). First, we differentiated equine umbilical cord blood (UCB)-derived MSC into HLC and found that these cells exhibited a distinct polygonal morphology, stored glycogen as visualized by periodic acid Schiff's reagent staining, and were positive for albumin and other hepatocyte-specific genes. Second, we demonstrated that UCB-HLC could be revived following cryopreservation and retained their phenotype for at least 10 days. Third, we differentiated three sets of MSC from bone marrow (BM), adipose tissue (AT), and peripheral blood (PB), matched within the same horse. We achieved a 100% differentiation success rate with BM, 0% with AT, and 66% with PB. An additional set of nine PB-MSC samples resulted in an overall success rate of 42% (n = 12), and age or gender did not seem to have an effect on the success of hepatic differentiation from that source. In a final set of experiments, we evaluated the use of these HLC as tools in different fields of biomedical research like virology, to study viral growth, and toxicology, to study chemicals with hepatic toxicity. Equine HLC were found susceptible for infection with the equine herpesviruses type 1 (EHV-1), -2, and -5, and exhibited a more sensitive dose-dependent response to arsenic toxicity than the commonly used human hepatocellular cell line HepG2. Taken together, these data indicate that equine MSC can be efficiently differentiated into HLC and these equine HLC could be a useful tool for in vitro studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call