Abstract

Similar to human diabetes, equine metabolic syndrome (EMS) causes insulin dysregulation leading to debilitating sequela including laminitis. The pathophysiological mechanisms underlying EMS and laminitis are not well known. Therefore, using an insulin-resistant equine model, we hypothesized that insulin dysregulation induces an increased expression of inflammatory proteins in a tissue specific manner. Two groups of horses (n = -5/group) were categorized as insulin-resistant (IR) or insulin-sensitive (IS), using a frequently sampled intra-venous glucose tolerance test. Biopsies from skeletal muscle, and visceral and subcutaneous adipose tissues were collected in both groups. Protein expression was quantified via Western blotting in order to investigate HSP90, α 2 macroglobulin (A2M), Fibrinogen α, β, γ isoforms as well as cytokines, including interleukin-1β (IL-1β) and interleukin-6 (IL-6), in muscle and adipose tissues. Protein expression of HSP90, A2M and IL1-β was significantly greater in visceral adipose tissue of IR horses compared to IS horses. Fibrinogen (α and γ) expression was only significantly increased in subcutaneous adipose tissue of IR group compared to IS group. In contrast, no statistically significant difference in protein expression of proinflammatory cytokines and acute phase proteins was reported in skeletal muscle of IR vs. IS horses. Relative protein expression of total and phospho-NFκB protein expression was not statistically significantly changed in adipose tissues of IR horses compared to IS horses. In conclusion, proinflammatory cytokines and acute phase proteins were upregulated in adipose tissue, but not in skeletal muscle, through an NF-kB independent pathway. Insights from this study could reveal novel biomarkers and potential therapeutic targets for EMS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call