Abstract
Equine herpesvirus 1 glycoprotein D (EHV-1 gD) has been shown in mouse models and in the natural host to have potential as a subunit vaccine, using various expression systems that included Escherichia coli, baculovirus and plasmid DNA. With the aim of producing secreted recombinant protein, we have cloned and expressed EHV-1 gD, lacking its native signal sequence and C-terminal transmembrane region, into the methylotrophic yeast Pichia pastoris. The truncated glycoprotein D (gD) gene was placed under the control of the methanol inducible alcohol oxidase 1 promoter and directed for secretion with the Saccharomyces cerevisiae α-factor prepro secretion signal. SDS-PAGE and Western blot analysis of culture supernatant fluid 24 h after induction revealed gD-specific protein products between 40 and 200 kDa. After treatment with PNGase F and Endo H, three predominant bands of 34, 45 and 48 kDa were detected, confirming high mannose N-linked glycosylation of Pichia-expressed gD (Pic-gD). N-terminal sequence analysis of PNGase F-treated affinity-purified protein showed that the native signal cleavage site of gD was being recognised by P. pastoris and the 34 kDa band could be explained by internal proteolytic cleavage effected by a putative Kex2-like protease. Pic-gD, when used in a DNA prime/protein boost inoculation schedule, induced high EHV-1 ELISA and virus neutralizing antibodies and provided protection from challenge infection in BALB/c mice.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.