Abstract

We present numerical solutions for stationary and axisymmetric equilibriums of compact stars associated with extremely strong magnetic fields. The interior of the compact stars is assumed to satisfy ideal magnetohydrodynamic (MHD) conditions, while in the region of negligible mass density the force-free conditions or electromagnetic vacuum are assumed. Solving all components of Einstein's equations, Maxwell's equations, ideal MHD equations, and force-free conditions, equilibriums of rotating compact stars associated with mixed poloidal and toroidal magnetic fields are obtained. It is found that in the extreme cases the strong mixed magnetic fields concentrating in a toroidal region near the equatorial surface expel the matter and form a force-free toroidal magnetotunnel. We also introduce a new differential rotation law for computing solutions associated with force-free magnetosphere, and present other extreme models without the magnetotunnel.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call