Abstract

For a well-developed sea at equilibrium with a constant wind, the energy-containing range of the wavenumber spectrum for wind-generated gravity waves is approximated by a generalized power law involving the angular spread function and mu, interpreted as a fractal codimension of a small surface patch. Dependence of mu on the wave age is estimated, and the 'Phillips constant', beta, along with the low-wavenumber boundary, k0, of the inertial subrange are analyzed on the basis of the wave action and energy conservation principles. The resulting expressions are employed to evaluate various non-Gaussian statistics of a weakly nonlinear sea surface, which determine the sea state bias in satellite altimetry. The locally accelerated decay of the spectral density function in a high-wavenumber dissipation subrange is pointed out as an important factor of wave dynamics and the geometrical optics treatment of the sea state bias. The analysis is carried out in the approximation of a unidirectional wave field and confined to the case of a well-developed sea.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call