Abstract
This paper aims at the general mathematical framework for the equilibrium theory of two-component lipid bilayer vesicles. To take into account the influences of the local compositions together with the mean curvature and Gaussian curvature of the membrane surface, a general potential functional is constructed. We introduce two kinds of virtual displacement modes: the normal one and the tangential one. By minimizing the potential functional, the equilibrium differential equations and the boundary conditions of two-component lipid vesicles are derived. Additionally, the geometrical constraint equation and geometrically permissible condition for the two-component lipid vesicles are presented. The physical, mathematical, and biological meanings of the equilibrium differential equations and the geometrical constraint equations are discussed. The influences of physical parameters on the geometrically permissible phase diagrams are predicted. Numerical results can be used to explain recent experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.