Abstract

Thermo-responsive (TR) hydrogels with a lower critical solution temperature swell strongly at temperatures below their volume phase transition temperature Tc and collapse above Tc. Biomedical application of these materials requires tuning the critical temperature in a rather wide interval. A facile method for modulation of Tc is to polymerize the basic monomers with hydrophilic or hydrophobic comonomers. Although the effectiveness of this method has been confirmed by experimental data, molar fractions of comonomers necessary for fine tuning of Tc in macroscopic gels and microgels are unknown. A simple model is developed for the equilibrium swelling of TR copolymer gels. Its adjustable parameters are found by fitting swelling diagrams on several macro- and microgels with N-isopropylacrylamide as a basic monomer. Good agreement is demonstrated between the experimental swelling curves and results of numerical analysis. An explicit expression is derived for the volume phase transition temperature as a function of molar fraction of comonomers. The ability of this relation to predict the critical temperature is confirmed by comparison with observations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.