Abstract

Previous studies of the responses of shape memory alloys (SMA) under a rapid heat pulse revealed the existence of a critical plateau stress that determines the performances of high rate SMA actuators. In this letter, we investigate the effects of temperature and initial stress on the plateau stress. Calculations based on the integration of the Clausius-Clapeyron equation while considering the inhomogeneity of the transformation temperature were in good agreement with the measured data. Our results indicate that the plateau stress represents equilibrium conditions and that actuation performances can be increased significantly by increasing the initial stress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.