Abstract
This work investigates the equilibrium stage of the crack propagation of a fine-grained soil after several drying and wetting cycles (shrinkage and swelling hysteresis). This stage is found to be crucial in practical engineering since the soil continues to show its irreversible hydraulic settlement, which is a potential risk for some severe structural damages. The shrinkage area and the shrinkage crack area were determined by using the image processing method. For the cyclic experimental investigations, the shrinkage cracks were followed during six months of successive wetting and drying cycles for two samples (with two different initial water contents). These long-term tests were completed by some short term single drying path tests performed on samples prepared at different initial states. The results showed the existence of a unique equilibrium stage at the end of the wetting and drying cycles for the two studied samples. The equilibrated soil subsidence was separated into two parts: the reversible settlement of the equilibrium stage and the irreversible settlements cumulated during successive wetting and drying cycles. At the equilibrium stage, the reversible deformation was 5.9% and the irreversible deformation was 3.8%. A simplified theoretical approach was also used to predict the cracking equilibrium stage and its soil subsidence. The fitted parameters of the theoretical approach for each cycle were stabilized to confirm the existence of this equilibrium stage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.