Abstract
In this paper, we analyze the stability of equilibrium manifolds of hyperbolic shallow water moment equations. Shallow water moment equations describe shallow flows for complex velocity profiles which vary in vertical direction and the models can be seen as extensions of the standard shallow water equations. Equilibrium stability is an important property of balance laws that determines the linear stability of solutions in the vicinity of equilibrium manifolds, and it is seen as a necessary condition for stable numerical solutions. After an analysis of the hyperbolic structure of the models, we identify three different stability manifolds based on three different limits of the right‐hand side friction term, which physically correspond to water‐at‐rest, constant‐velocity, and bottom‐at‐rest velocity profiles. The stability analysis then shows that the structural stability conditions are fulfilled for the water‐at‐rest equilibrium and the constant‐velocity equilibrium. However, the bottom‐at‐rest equilibrium can lead to instable modes depending on the velocity profile. Relaxation toward the respective equilibrium manifolds is investigated numerically for different models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.