Abstract

This study investigated the effect of chemical heterogeneity of humic acids (HAs) on the equilibrium sorption of phenanthrene by HA extracts. Six HA samples were extracted from three different soils with 0.5 M NaOH and 0.1 M Na 4P 2O 7 and were characterized with elemental analysis, infrared spectrometry, and solid-state 13C nuclear magnetic resonance (NMR) spectrometry. The equilibrium sorption measurements were carried out with a batch technique and using the six HA solids as the sorbents and phenanthrene as the sorbate. The measured sorption isotherm data were fitted to the Freundlich equation. The results showed that, for the same soil, (i) the total HA mass extracted with Na 4P 2O 7 was 13.7–22.6% less than that extracted with NaOH, (ii) the Na 4P 2O 7-extracted HA had higher O/C atomic ratio, greater content of polar organic carbons (POC), and lower aliphatic carbon content than the NaOH-extracted HA, and (iii) the Na 4P 2O 7-extracted HA exhibited greater sorption isotherm linearity and but not dramatic difference in sorption capacities than the NaOH extracted HA. The differences in the HA properties resulting from the two different extraction methods may be because NaOH can hydrolyze insoluble HA fractions such as fatty acid like macromolecules bound on soils whereas Na 4P 2O 7 could not. As a result, the HAs extracted with the two different methods had different polarity and functionality which affected their sorption property for phenanthrene.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.