Abstract

Fourteen equilibrium solutions of the restricted problem of 2+2 bodies are shown to exist. Six of these solutions are located about the collinear Lagrangian points of the classical restricted problem of three bodies. Eight solutions are found in the neighborhood of the triangular Lagrangian points. Linear stability analysis reveals that all of the equilibrium solutions are unstable with the exception of four solutions; two in the vicinity of each of the triangular Lagrangian points. These four solutions are found to be stable provided the mass parameter of the primary masses is less than a critical value which depends also on the mass of the minor bodies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.