Abstract

Chiral silica (P)-nanoparticles grafted with (P)-helicene recognize the molecular structure of a chiral diol disulfide in the presence of monool disulfide and dibutyl disulfide. The (P)-nanoparticles selectively adsorb the diol disulfide, aggregate, and precipitate from solution. Under rhodium-catalyzed equilibrium among three disulfides, the diol disulfide is removed from solution by precipitation, which induces an equilibrium shift in the solution. By conducting the precipitation experiment twice, we obtained the diol disulfide in 37% yield from a statistical 1:2:1 equilibrium mixture of three disulfides. The method is applied to a racemic monool disulfide, and an optically active diol disulfide is obtained via kinetic resolution and equilibrium shift.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.