Abstract
We apply the generalized reinforcement (GR) learning protocol to the stag hunt game. GR learning combines positive and negative reinforcement. The GR learning rule generates the GR dynamic, which governs the evolution of the mixed strategy of agents in the population. We identify conditions under which the GR dynamic converges globally to one of the two pure strategy Nash equilibria of the game.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.