Abstract

This paper introduces an embedding of a Nash equilibrium into a sequence of perturbed games, which achieves continuous differentiability of best responses by mollifying them over a continuously differentiable density with compact support (window size). Along any sequence with shrinking window size, the equilibria are single-valued whenever the function has a regular Jacobian and the set of equilibria where it is singular has measure zero. We achieve a further reduction of the equilibrium set by inserting within the embedding a procedure that eliminates the strict interior of equilibrium sets. The mollifier can be approximated consistently using kernel density regression, and we sketch a non-stationary stochastic optimization algorithm that uses this approximation and converges with probability one to an equilibrium of the original game.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.