Abstract

Equilibrium magnetic properties of the mixed state in type-II superconductors were measured with high purity bulk and film niobium samples in parallel and perpendicular magnetic fields using dc magnetometry and scanning Hall-probe microscopy. Equilibrium magnetization data for the perpendicular geometry were obtained for the first time. It was found that none of the existing theories is consistent with these new data. To address this problem, a theoretical model is developed and experimentally validated. The new model describes the mixed state in an averaged limit, i.e. %without detailing the samples' magnetic structure and therefore ignoring interactions between vortices. It is quantitatively consistent with the data obtained in a perpendicular field and provides new insights on properties of vortices. % and the entire mixed state. At low values of the Ginzburg-Landau parameter, the model converts to that of Peierls and London for the intermediate state in type-I superconductors. It is shown that description of the vortex matter in superconductors in terms of a 2D gas is more appropriate than the frequently used crystal- and glass-like scenarios.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call