Abstract

Derivation of the thermodynamic properties of fluids of hard non-spherical molecules of arbitrary symmetry is based on the decoupling approximation. Theoretical expressions are given and calculations made for the equation of state and virial coefficients for hard ellipsoids. These results are compared with Monte Carlo values and show fair agreement in all cases. The theoretical predictions for the equation of state for binary mixtures are compared with the Monte Carlo results for hard spheres and hard prolate spherocylinders. Theoretical expressions for the first order quantum correction to the free energy, pressure and virial coefficients are also given. The quantum effects increase with increase of density and with increase of anisotropy parameter.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call