Abstract

The paper presents some security market pricing results in the setting of a security market equilibrium in continuous time. The theme of the paper is financial valuation theory when the primitive assets pay out real dividends represented by processes of unbounded variation. In continuous time, when the models are also continuous, this is the most general representation of real dividends, and it can be of practical interest to analyze such models. Taking as the starting point an extension to continuous time of the Lucas consumption‐based model, we derive the equilibrium short‐term interest rate, present a new derivation of the consumption‐based capital asset pricing model, demonstrate how equilibrium forward and futures prices can be derived, including several examples, and finally we derive the equilibrium price of a European call option in a situation where the underlying asset pays dividends according to an Itô process of unbounded variation. In the latter case we demonstrate how this pricing formula simplifies to known results in special cases, among them the famous Black–Scholes formula and the Merton formula for a special dividend rate process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.