Abstract
Abstract We study the structure of the set of equilibrium payoffs in finite games, both for Nash and correlated equilibria. In the two-player case, we obtain a full characterization: if U and P are subsets of R 2 , then there exists a bimatrix game whose sets of Nash and correlated equilibrium payoffs are, respectively, U and P, if and only if U is a finite union of rectangles, P is a polytope, and P contains U. The n-player case and the robustness of the result to perturbation of the payoff matrices are also studied. We show that arbitrarily close games may have arbitrarily different sets of equilibrium payoffs. All existence proofs are constructive.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.