Abstract

A preceding study of the loss of stability of a homogeneous strain state in infinite homogeneous solid due to localization of strain into an ellipsoidal region is complemented by determining the condition of bifurcation of equilibrium path due to ellipsoidal localization mode. The bifurcation occurs when the tangential moduli matrix becomes singular, which coincides with Hill’s classical bifurcation condition for localization into an infinite layer. The bifurcation is normally of Shanley type, occurring in absence of neutral equilibrium while the controlled displacements at infinity increase. During the loading process with displacement increase controlled at infinity, this type of bifurcation precedes the loss of stability of equilibrium due to an ellipsoidal localization mode, except when the tangential moduli change suddenly (which happens, e.g., when the slope of the stress-strain diagram is discontinuous, or when temperature is increased).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.