Abstract

This study examines bed and bank adjustment in the 105-km reach of the Green River immediately downstream from Flaming Gorge Dam by the use of historical aerial and oblique photographs, analysis of current and abandoned stream-gaging records, and field observations. Although this segment has been previously characterized as sediment deficient, these data show that sediment is accumulating in all reaches and that the bed has not degraded at any location where historical data are available. Adjustment is occurring through a combination of deposition of post-dam sediment and stabilization of pre-dam deposits, resulting in a 10–30% reduction in average width of the channel. All post-dam surfaces are colonized by woody riparian vegetation. The style of channel adjustment varies between geomorphically defined reaches. In canyons dominated by debris fans and gravel-bedded restricted meandering reaches, gravel bars have become inactive and accumulated fine sediment. In the sand-bedded meandering reaches, existing islands have increased in size and new mid-channel islands have formed. In all of these types of reaches, post-dam deposits line the banks and sediment has accumulated in side-channels that previously separated islands from the bank. These findings demonstrate that sediment budgets that show a balance between inputs and outputs cannot necessarily be interpreted to indicate channel equilibrium. A sediment mass balance for 150-km reach between the dam and the first long-term gage indicates approximate balance of inputs and outputs for the pre- and post-dam periods. When uncertainty in budget components is considered, the mass balance is indeterminate. Although the Green River may have been in approximate equilibrium in the pre-dam period, we have shown that channel width is decreasing in the post-dam period. The post-dam deposits constitute a small but a significant component of the sediment budget upstream from the first major tributary. Sediment is supplied to this reach by small tributaries and, to a lesser extent, erosion of pre-dam alluvium. Downstream from the study area, the volume of the post-dam deposits is tiny relative to the volume of sediment input from the first major tributary.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call