Abstract

The effect of weak external axisymmetric magnetic and electrostatic perturbations on the equilibrium of a non‐neutral plasma confined in a Malmberg‐Penning trap is analyzed. A semi‐analytic solution for the potential variations inside the trap is found in a paraxial limit of the perturbations for the case of global thermal equilibrium. The populations of magnetically and electrostatically trapped particles created by the external perturbations are characterized, and their fractions are calculated explicitly for a bi‐Maxwellian distribution function. 2D numerical simulations of the thermal equilibrium of a pure electron plasma in the presence of axial magnetic field perturbations are performed to check the limits of validity of the analytical 1D approximation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.