Abstract

This paper considers the problem of equilibrium of a nonlinearly elastic spherical shell filled with a heavy fluid and resting on a smooth, absolutely rigid, flat surface. The weight of the shell is assumed to be negligible in comparison with the weight of the fluid filling it. The contact region with the supporting plane is one of the unknowns in the problem. Equilibrium equations for a membrane shell are obtained in an accurate nonlinear formulation. Stresses and strains of a shell made of a Mooney–Rivlin material are numerically investigated. The results are compared with calculation results for the case of inflation of a spherical shell ignoring the weight of the fluid filling. The effect of the fluid weight on shell strains and stresses is estimated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.