Abstract
We consider coupled map lattices of hyperbolic type, i.e., chains of weakly interacting hyperbolic sets (attractors) over multi-dimensional lattices. We describe the thermodynamic formalism of the underlying spin lattice system and then prove existence, uniqueness, mixing properties, and exponential decay of correlations of equilibrium measures for a class of Holder continuous potential functions with a sufficiently small Holder constant. We also study finite-dimensional approximations of equilibrium measures in terms of lattice systems (ℤ-approximations) and lattice spin systems (ℤ d -approximations). We apply our results to establish existence, uniqueness, and mixing property of SRB-measures as well as obtain the entropy formula.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.