Abstract

In this study, a novel bio-adsorbent (PT-GO) was prepared by functionalization persimmon tannin (PT) with graphene oxide (GO) and the effective adsorption behaviors of Au3+, Pd2+ and Ag+ ions from aqueous solution was investigated. The PT-GO was characterized by Fourier transform infrared spectrometer (FTIR), scanning electronic microscope (SEM), thermogravimetric analysis (TGA) and Zeta potential. Many influence factors such as pH value, bio-adsorbent dosage, initial concentration of metal ions and contact time were optimized. The maximum adsorption capacity for Au3+, Pd2+ and Ag+ was 1325.09mg/g, 797.66mg/g and 421.01mg/g, respectively. The equilibrium isotherm for the adsorption of Au3+ and Ag+ on PT-GO were found to obey the Langmuir model, while the Freundlich model fitted better for Pd2+. The adsorption process of Au3+, Pd2+ presented relatively fast adsorption kinetics with pseudo-second-order equation as the best fitting model, while the pseudo-first-order kinetic model was suitable for describing the adsorption of Ag+. Combination of ion exchange, electrostatic interaction and physical adsorption was the mechanism for adsorption of Au3+, Pd2+ and Ag+ onto PT-GO bio-adsorbent. Therefore, the PT-GO bio-adsorbent would be an ideal adsorbent for removal of precious metal ions and broaden the potential applications of persimmon tannin in environmental research.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.