Abstract

In the operations research literature, the queue joining probability is monotonic decreasing in the queue length; the longer the queue, the fewer consumers join. Recent academic and empirical evidence indicates that queue-joining probabilities may not always be decreasing in the queue length. We provide a simple explanation for these nonmonotonic queue-joining strategies by relaxing the informational assumptions in Naor's model. Instead of imposing that the expected service time and service value are common knowledge, we assume that they are unknown to consumers, but positively correlated. Under such informational assumptions, the posterior expected waiting cost and service value increase in the observed queue length. As a consequence, we show that queue-joining equilibria may emerge for which the joining probability increases locally in the queue length. We refer to these as “sputtering equilibria.” We discuss when and why such sputtering equilibria exist for discrete as well as continuously distributed priors on the expected service time (with positively correlated service value).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.