Abstract
ABSTRACTThis article considers an optimal excess-of-loss reinsurance–investment problem for a mean–variance insurer, and aims to develop an equilibrium reinsurance–investment strategy. The surplus process is assumed to follow the classical Cramér–Lundberg model, and the insurer is allowed to purchase excess-of-loss reinsurance and invest her surplus in a risk-free asset and a risky asset. The market price of risk depends on a Markovian, affine-form and square-root stochastic factor process. Under the mean–variance criterion, equilibrium reinsurance–investment strategy and the corresponding equilibrium value function are derived by applying a game theoretic framework. Finally, numerical examples are presented to illustrate our results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.