Abstract

Standard textbook derivations of the equilibrium distribution function rely on assumptions that may not satisfy all readers. Here, we present a straightforward approach to derive the equilibrium distribution function from the microscopic dynamics, and review how it can be used to obtain the expected expressions. In molecular dynamics simulations the equations of motion are often modified to simulate different ensembles or phenomena. We show that in some cases these equations will sample an equilibrium ensemble whereas in other cases they will not. For example, we find that for charged particles driven by a field, an equilibrium distribution is only possible when the system is confined. Furthermore, the approach correctly predicts that neither SLLOD shear flow dynamics nor constant temperature dynamics with a Berendsen thermostat sample any time-independent phase space distributions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.