Abstract
Abstract We explain algorithms for computing Nash equilibria of two-player games given in strategic form or extensive form. The strategic form is a table that lists the players' strategies and resulting payoffs. The “best response” condition states that in equilibrium, all pure strategies in the support of a mixed strategy must get maximal, and hence equal, payoff. The resulting equations and inequalities define polytopes, whose “completely labeled” vertex pairs are the Nash equilibria of the game. The Lemke–Howson algorithm follows a path of edges of the polytope pair that leads to one equilibrium. Extensive games are game trees, with information sets that model imperfect information of the players. Strategies in an extensive game are combinations of moves, so the strategic form has exponential size. In contrast, the linear-sized sequence form of the extensive game describes sequences of moves and how to randomize between them. Introduction A basic model in noncooperative game theory is the strategic form that defines a game by a set of strategies for each player and a payoff to each player for any strategy profile (which is a combination of strategies, one for each player). The central solution concept for such games is the Nash equilibrium , a strategy profile where each strategy is a best response to the fixed strategies of the other players. In general, equilibria exist only in mixed (randomized) strategies, with probabilities that fulfill certain equations and inequalities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.